Synergistic cytotoxicity and apoptosis by Apo-2 ligand and adriamycin against bladder cancer cells.

نویسندگان

  • Y Mizutani
  • O Yoshida
  • T Miki
  • B Bonavida
چکیده

Resistance to conventional anticancer chemotherapeutic agents remains one of the major problems in the treatment of bladder cancer. Hence, new therapeutic modalities are necessary to treat the drug-resistant cancers. Apo-2 ligand (Apo-2L) is member of the tumor necrosis factor ligand family, and it induces apoptosis in cancer cells. Several cytotoxic anticancer drugs, including Adriamycin (ADR), also mediate apoptosis and may share the common intracellular pathways leading to cell death. We reasoned that combination treatment of the drug-resistant cancer cells with Apo-2L and drugs might overcome their resistance. Here, we examined whether bladder cancer cells are sensitive to Apo-2L-mediated cytotoxicity and whether Apo-2L can synergize with ADR in cytotoxicity and apoptosis against bladder cancer cells. Recombinant human soluble Apo-2L (sApo-2L), which carries the extracellular domain of Apo-2L, was used as a ligand. Cytotoxicity was determined by a 1-day microculture tetrazolium dye assay. Synergy was assessed by isobolographic analysis. Human T24 bladder cancer line was relatively resistant to sApo-2L. Treatment of T24 line with combination of sApo-2L and ADR resulted in a synergistic cytotoxic effect. Synergy was also achieved in the ADR-resistant T24 line (T24/ADR), two other bladder cancer lines, and three freshly derived human bladder cancer cell samples. In addition, T24 cells were sensitive to treatment with sApo-2L combined with epirubicin or pirarubicin. The synergy achieved in cytotoxicity with sApo-2L and ADR was also achieved in apoptosis. Intracellular accumulation of ADR was not affected by sApo-2L. Incubation of T24 cells with sApo-2L down-regulated the expression of glutathione S-transferase-pi mRNA. This study demonstrates that combination treatment of bladder cancer cells with sApo-2L and ADR overcomes their resistance. The sensitization obtained with established ADR-resistant bladder cancer cells and freshly isolated bladder cancer cells required low subtoxic concentrations of ADR, thus supporting the in vivo potential application of combination of sApo-2L and ADR in the treatment of ADR-resistant bladder cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lactobacillus Acidophilus Cytotoxicity Effect and Apoptosis in Human Bladder Carcinoma Cells: An In Vitro Study

Introduction: Anticancer effects of Lactobacillus acidophilus, as a probiotic bacterium, have been indicated in several studies. There are common therapeutic options for bladder cancer treatment; however, their side effects and recurrence of disease are considerable. Therefore, complementary medication is essential and it must be safe and effective. In the present research, we assessed the anti...

متن کامل

Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo.

Tumor necrosis factor-related apoptosis-inducing-ligand (TRAIL/Apo-2 ligand) induces apoptosis in the majority of cancer cells without appreciable effect in normal cells. Here, we report the effects of TRAIL on apoptosis in several human breast cancer cell lines, primary memory epithelial cells, and immortalized nontransformed cell lines, and we examine whether chemotherapeutic agents augment T...

متن کامل

Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...

متن کامل

Synergistic effects of Ferula gummosa and radiotherapy on induction of cytotoxicity in HeLa cell line

Objective: Cervical cancer is the second most common type of cancer among women, worldwide; and for treatment of this type of cancer radiotherapy is commonly used. Ferula gummosa Boiss(“Barije” in Persian, from the family Apiaceae), (F. gummosa), is an extremely precious medicinal plant which naturally grows throughout the Mediterranean and Central Asia and is a native plant in Iran. The presen...

متن کامل

Synergistic induction of apoptosis by mapatumumab and anthracyclines in human bladder cancer cells.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in a variety of tumor cells by engaging the death receptors 4 (DR4) and 5 (DR5). We investigated the effect of chemotherapeutic drugs on DR4-mediated apoptosis in human bladder cancer cells, using a human monoclonal agonistic antibody specific for DR4, mapatumumab. Cytotoxicity was determined by 3-(4,5-dimethylth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 5 9  شماره 

صفحات  -

تاریخ انتشار 1999